484 research outputs found

    Preoperative diagnosis of obscure gastrointestinal bleeding due to a GIST of the jejunum: a case report

    Get PDF
    Gastrointestinal stromal tumours (GISTs) are rare mesenchymal neoplasms affecting the digestive tract or nearby structures within the abdomen. We present a case of a 66-year-old female patient who presented with obscure anemia due to gastrointestinal bleeding and underwent exploratory laparotomy during which a large GIST of the small intestine was discovered. Examining the preoperative results of video capsule endoscopy, computed tomography, and angiography and comparing them with the operative findings we discuss which of these investigations plays the most important role in the detection and localization of GIST. A sort review of the literature is also conducted on these rare mesenchymal tumours

    The Zinc Transporter SLC39A14/ZIP14 Controls G-Protein Coupled Receptor-Mediated Signaling Required for Systemic Growth

    Get PDF
    Aberrant zinc (Zn) homeostasis is associated with abnormal control of mammalian growth, although the molecular mechanisms of Zn's roles in regulating systemic growth remain to be clarified. Here we report that the cell membrane-localized Zn transporter SLC39A14 controls G-protein coupled receptor (GPCR)-mediated signaling. Mice lacking Slc39a14 (Slc39a14-KO mice) exhibit growth retardation and impaired gluconeogenesis, which are attributable to disrupted GPCR signaling in the growth plate, pituitary gland, and liver. The decreased signaling is a consequence of the reduced basal level of cyclic adenosine monophosphate (cAMP) caused by increased phosphodiesterase (PDE) activity in Slc39a14-KO cells. We conclude that SLC39A14 facilitates GPCR-mediated cAMP-CREB signaling by suppressing the basal PDE activity, and that this is one mechanism for Zn's involvement in systemic growth processes. Our data highlight SLC39A14 as an important novel player in GPCR-mediated signaling. In addition, the Slc39a14-KO mice may be useful for studying the GPCR-associated regulation of mammalian systemic growth

    Study of the decays B->D_s1(2536)+ anti-D(*)

    Full text link
    We report a study of the decays B -> D_s1(2536)+ anti-D(*), where anti-D(*) is anti-D0, D- or D*-, using a sample of 657 x 10^6 B anti-B pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. The branching fractions of the decays B+ -> D_s1(2536)+ anti-D0, B0 -> D_s1(2536)+ D- and B0 -> D_s1(2536)+ D*- multiplied by that of D_s1(2536)+ -> (D*0K+ + D*+K0) are found to be (3.97+-0.85+-0.56) x 10^-4, (2.75+-0.62+-0.36) x 10^-4 and (5.01+-1.21+-0.70) x 10^-4, respectively.Comment: 6 pages, 2 figues, submitted to PRD (RC

    Singular values of the Dirac operator in dense QCD-like theories

    Full text link
    We study the singular values of the Dirac operator in dense QCD-like theories at zero temperature. The Dirac singular values are real and nonnegative at any nonzero quark density. The scale of their spectrum is set by the diquark condensate, in contrast to the complex Dirac eigenvalues whose scale is set by the chiral condensate at low density and by the BCS gap at high density. We identify three different low-energy effective theories with diquark sources applicable at low, intermediate, and high density, together with their overlapping domains of validity. We derive a number of exact formulas for the Dirac singular values, including Banks-Casher-type relations for the diquark condensate, Smilga-Stern-type relations for the slope of the singular value density, and Leutwyler-Smilga-type sum rules for the inverse singular values. We construct random matrix theories and determine the form of the microscopic spectral correlation functions of the singular values for all nonzero quark densities. We also derive a rigorous index theorem for non-Hermitian Dirac operators. Our results can in principle be tested in lattice simulations.Comment: 3 references added, version published in JHE

    Production of Virus-Derived Ping-Pong-Dependent piRNA-like Small RNAs in the Mosquito Soma

    Get PDF
    The natural maintenance cycles of many mosquito-borne pathogens require establishment of persistent non-lethal infections in the invertebrate host. The mechanism by which this occurs is not well understood, but we have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is important in modulating the pathogenesis of alphavirus infections in the mosquito. However, we report here that infection of mosquitoes with an alphavirus also triggers the production of another class of virus-derived small RNAs that exhibit many similarities to ping-pong-dependent piwi-interacting RNAs (piRNAs). However, unlike ping-pong-dependent piRNAs that have been described previously from repetitive elements or piRNA clusters, our work suggests production in the soma. We also present evidence that suggests virus-derived piRNA-like small RNAs are capable of modulating the pathogenesis of alphavirus infections in dicer-2 null mutant mosquito cell lines defective in viral siRNA production. Overall, our results suggest that a non-canonical piRNA pathway is present in the soma of vector mosquitoes and may be acting redundantly to the siRNA pathway to target alphavirus replication

    C6/36 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response

    Get PDF
    Mosquitoes rely on RNA interference (RNAi) as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV) infection in C6/36 (Aedes albopictus) cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses). Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae), Sindbis virus (SINV, Togaviridae) and La Crosse virus (LACV, Bunyaviridae) and total RNA recovered from cell lysates. Small RNA (sRNA) libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs) from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26–27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand) and distribution (position along viral genome) of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney) cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level

    Quantitative-spatial assessment of soil contamination in S. Francisco de Assis due to mining activity of the Panasqueira mine (Portugal)

    Get PDF
    Through the years, mining and beneficiation processes produces large amounts of As-rich mine wastes laid up in huge tailings and open-air impoundments (Barroca Grande and Rio tailings) that are the main source of pollution in the surrounding area once they are exposed to the weathering conditions leading to the formation of AMD and consequently to the contamination of the surrounding environments, in particularly soils. In order to investigate the environmental contamination impact on S. Francisco de Assis (village located between the two major impoundments and tailings) agricultural soils, a geochemical survey was undertaken to assess toxic metals associations, related levels and their spatial distribution, and to identify the possible contamination sources. According to the calculated contamination factor, As and Zn have a very high contamination factor giving rise to 65.4 % of samples with a moderate to high pollution degree; 34.6 % have been classified as nil to very low pollution degree. The contamination factor spatial distribution put in evidence the fact that As, Cd, Cu, Pb, and Zn soils contents, downstream Barroca Grande tailing, are increased when compared with the local Bk soils. The mechanical dispersion, due to erosion, is the main contamination source. The chemical extraction demonstrates that the trace metals distribution and accumulation in S. Francisco de Assis soils is related to sulfides, but also to amorphous or poorly crystalline iron oxide phases. The partitioning study allowed understanding the local chemical elements mobility and precipitation processes, giving rise to the contamination dispersion model of the study area. The wind and hydrological factors are responsible for the chemical elements transport mechanisms, the water being the main transporter medium and soils as one of the possible retention media

    Involvement of Autophagy in Cardiac Remodeling in Transgenic Mice with Cardiac Specific Over-Expression of Human Programmed Cell Death 5

    Get PDF
    Programmed cell death 5 (PDCD5) is a cytosolic protein suppressing growth of multiple types of cancer cells through activating p53. We hypothesized that PDCD5 plays an essential role in cardiac remodeling and function. PDCD5 was significantly up-regulated in the hearts from mice subjected to angiotensin II treatment or transverse aortic constriction. Thus, we generated transgenic mice over-expressing human PDCD5 under the control of alpha myosin heavy chain promoter to examine the role of PDCD5 in cardiac remodeling. Transgenic founder died spontaneously displayed enlarged heart. The high PDCD5 over-expressing line (10-fold) showed reduced survival rate, increase in heart weight normalized to body weight. Real-Time RT-PCR analysis revealed fetal gene program was up-regulated. Echocardiography and histopathological examination showed characteristics of dilated cardiomyopathy and heart failure in transgenic mice. Western blot and immunohistochemistry analysis showed autophagy was dramatically increased in transgenic mice as compared to WT littermates control mice, while apoptosis remained unchanged. The enhanced autophagy in high over-expressing line was associated with significant increase in p53 activity and its downstream target damage-regulated autophagy modulator expression. The low over-expressing line (3.5-fold) appeared normal, but was more susceptible to angiotensin II-induced cardiac hypertrophy. This study is the first providing evidence that PDCD5 plays an important role in cardiac remodeling

    A2 Noradrenergic Lesions Prevent Renal Sympathoinhibition Induced by Hypernatremia in Rats

    Get PDF
    Renal vasodilation and sympathoinhibition are recognized responses induced by hypernatremia, but the central neural pathways underlying such responses are not yet entirely understood. Several findings suggest that A2 noradrenergic neurons, which are found in the nucleus of the solitary tract (NTS), play a role in the pathways that contribute to body fluid homeostasis and cardiovascular regulation. The purpose of this study was to determine the effects of selective lesions of A2 neurons on the renal vasodilation and sympathoinhibition induced by hypertonic saline (HS) infusion. Male Wistar rats (280–350 g) received an injection into the NTS of anti-dopamine-beta-hydroxylase-saporin (A2 lesion; 6.3 ng in 60 nl; n = 6) or free saporin (sham; 1.3 ng in 60 nl; n = 7). Two weeks later, the rats were anesthetized (urethane 1.2 g⋅kg−1 b.wt., i.v.) and the blood pressure, renal blood flow (RBF), renal vascular conductance (RVC) and renal sympathetic nerve activity (RSNA) were recorded. In sham rats, the HS infusion (3 M NaCl, 1.8 ml⋅kg−1 b.wt., i.v.) induced transient hypertension (peak at 10 min after HS; 9±2.7 mmHg) and increases in the RBF and RVC (141±7.9% and 140±7.9% of baseline at 60 min after HS, respectively). HS infusion also decreased the RSNA (−45±5.0% at 10 min after HS) throughout the experimental period. In the A2-lesioned rats, the HS infusion induced transient hypertension (6±1.4 mmHg at 10 min after HS), as well as increased RBF and RVC (133±5.2% and 134±6.9% of baseline at 60 min after HS, respectively). However, in these rats, the HS failed to reduce the RSNA (115±3.1% at 10 min after HS). The extent of the catecholaminergic lesions was confirmed by immunocytochemistry. These results suggest that A2 noradrenergic neurons are components of the neural pathways regulating the composition of the extracellular fluid compartment and are selectively involved in hypernatremia-induced sympathoinhibition
    corecore